
Apache Doris
A Next-Generation Real-Time Data Warehouse

 What can it do?

 Community

 Performance

 Architecture & Features

Apache Doris

2013
Project Creation

2017
Open Source

9400+
GitHub Stars

550+
Contributors

2500+
Enterprises

2022
Graduation

(ASF Top Level Project)

Open-Source
Real-Time
Data Warehouse

Apache Doris

V0.14

2021.05

V0.15

2021.11

V1.0

2022.04
V1.1

2022.07
V1.2

2022.12 V2.0

2023.08

Active Community

What Does Apache Doris Do?

Performance

3 × 16 Core, 64GB cloud virtual machines, SF100

What’s Behind the Speed?

 Cost-based join reorder, pushdown, choice of RF

 Short circuit plan for high-concurrency queries

 Reduce virtual function calls and cache miss

 Efficient use of SIMD instructions, supports

X86 and ARM

 Parallelism within and between nodes to

give full play to machines and cores

 Supports distributed join of large tables

and operator materialization

 Data-driven, no blocking of threads, fine-

grained concurrency

 Self-adjusted parallelism level  Columnar storage for efficient encoding,

compression, and data sharding

 Row and columnar hybrid storage for flat

tables to reduce IOPS amplification

 Bloom Filter, Min / Max / Sum

 Prefix Sorted Index

 Consistent single-table materialized views,

support general aggregation functions

 Multi-table materialized views (V2.1)

 Caching of query results, data, metadata,

and intermediate data

 Caching of internal and external tables

Performance

 Use cases

 Customer-facing: e-commerce delivery checking, etc.

 Machine-facing: real-time risk control, IoT, etc.

 Eg. select * from user_table where id = xxx

 For flat tables, columnar storage brings IOPS

amplification

 Unnecessary to use query optimizer for simple queries

 SQL parsing in frontend, causing bottlenecks

 Solutions

 Introduce hybrid storage

 Short circuit plan

 Introduce Prepared Statement

Data Ingestion

 Stream Load: Load local files to Doris via HTTP; linearly scalable throughput; 10 million rows per second

 Flink Doris Connector: Built-in Flink CDC; Load data from OLTP databases

 Routine Load: Subscribe data from Apache Kafka

 Insert into values: via JDBC

 Spark Load: Leverage Spark resources to pre-process data from HDFS and object storage

 Broker Load: No need to deploy Broker; supports HDFS and S3 protocol

 Data integration for data lakehouse: insert into <internal table> select from <external table>

 Storage systems (S3, HDFS, local files)

 Data lakes (Iceberg，Hudi，Hive)

 Databases (MySQL, Oracle, Elasticsearch, etc.)

: Spark Connector, Airbyte, Dataworks, DataX, X2Doris, Parallel Load

Data Update

 E-commerce order analysis, user profile update, data deletion, data overwrite

 Hive: Update on a partition level

 Iceberg, DeltaLake, Hudi: Merge on Read or Copy on Write, suitable for low-frequency batch updating but not

high-frequency real-time updating

 Elasticsearch, OLTP system, HTAP systems: inadequate analytic capabilities and high costs

 Update an entire row (Upsert)

 Partial column update

 Conditional deletion

 Conditional update

 Rewrite a table or partition (insert overwrite)

Data Update

 Merge on Read: Suitable for low-frequency batch updates

 Merge on Write:

 Suitable for real-time writing

 Light merge upon writing, enabling 5~10 times faster query performance than Merge on Read

 Supports most updates: Upsert, partial column update, conditional update/deletion, partition overwrite, etc.

UPDATE test SET v1 = v1 + 1 WHERE k1=1

UPDATE t1

 SET t1.c1 = t2.c1, t1.c3 = t2.c3 * 100

 FROM t2 INNER JOIN t3 ON t2.id = t3.id

 WHERE t1.id = t2.id;

DELETE FROM my_table PARTITIONS (p1, p2)

 WHERE k1 >= 3 AND k2 = "abc";

DELETE FROM t1

 USING t2 INNER JOIN t3 ON t2.id = t3.id

 WHERE t1.id = t2.id;

UPSERT is supported is all data ingestion methods. In

concurrent updates, the updating order is decided by

that or transaction commits or the Sequence column

Partial column update is supported Stream Load，

Update，Insert into values （v2.0.1）

 Aggregate tables implements partial column udpate by replace_if_not_null

 All table models supports data deletion based on specified predicates and some date expressions (curdate(), etc.)

DELETE FROM my_table PARTITION p1 WHERE k1 = 3;

 DELETE FROM my_table PARTITIONS (p1, p2) WHERE k1 >= 3 AND k2 = "abc" AND t = curdate();

Service Availability & Data Reliability

 Frontend nodes: metadata management; multi-replica

 Backend nodes: query execution, multi-replica, auto-

balancing and restoration

 Client can be linked to frontend nodes via workload

balancing

 In Backend downtime, queries will be retried

 Rolling upgrading/scaling

Supports data backup and restoreation at the level of

table/partition (data backup to HDFS or object storage

BACKUP SNAPSHOT example_db.snapshot_label2

TO example_repo

ON (

 example_tbl PARTITION (p1,p2),

 example_tbl2);

RESTORE SNAPSHOT example_db1.`snapshot_1`

FROM `example_repo`

ON (`backup_tbl`)

PROPERTIES (

 "backup_timestamp"="2022-04-08-15-52-29");

Service Availability & Data Reliability

 Disaster recovery: for quick restoration of data and services

 Read-write separation: for higher performance and stability

 Isolated upgrade of cluster: pre-creation of backup clusters to prevent interruptions by incompatibility or bugs

 Performance: minute-level latency, reaching the upper speed limit of your NIC and disks

Multi-Tenant Management

 Role-Based Access Control

 Granular Privilege Control

 Privileges on db/tables

 Privileges on rows

 Privileges on columns

 Connect to your LDAP for authentication

 Supports SSL/TLS encryption

 Resource Group: replicas in groups, users bound to groups

 WorkLoad Group (V2.0): soft limit (resource%)

 Block Rule: Block certain queries that involve too many tablets/partitions

 Memory limit on single query (Memory Tracker)

 Storage-Compute Separation: integrate with multi-cluster mechanism

(V2.1)

 Separate data ingestion, compaction threads from queries (V2.1)

Easy to Use

 Compatible with MySQL protocol, easy-to-learn, compatible with most BI tools

 Light Schema Change

 Add or delete fields (within milliseconds)

 Add or delete indexes

Modify column types

 Light Schema Change + Flink-Doris-Connector = Synchronizing DDL from upstream tables within

milliseconds

 Log analysis, observability analysis, time series data analysis, security analysis

 Schema-free support, low cost, text analysis, multi-dimensional analysis, full-text search

 NGram Bloomfilter, 200%↑

 “LIKE” pushdown to storage layer, 200%~300%↑

 Self-adaptive “LIKE”

 The Hyperscan regex matching library, 200%~1000%↑

 Volnitsky algorithm for sub-string matching, 150%~300%↑

 Supports tokenization for full-text search

 Array, Map, Json; Variant (2.1), different data types in one field

 Columnar storage, ZSTD compression, tiered storage for hot and cold data

 Less forward indexing, time-series compaction, single-copy ingestion

Semi-Structured Data Analysis

Data Lakehouse Capabilities

 Faster queries in lakehouse

 Data integration

 Unified query gateway

 ETL/ELT acceleration

 Metadata mapping, caching & auto-refreshing

 Supports Hive Meta Store & open formats

 Supports Elasticsearch, relational database,

plugins

 Supports Kerberos, Apache Ranger

 Accelerated by the Doris engine

 Hot data cached locally

 Compute nodes

 Write query results into Doris to form views

Tiered Storage

SSD HDD

Object Storage

Hot Data

Cold Data

Storage Strategy

 Tiered Storage Table  Normal table

Storage Strategy

Storage
Strategy

 Hot data in SSD & HDD (fast read/write but expensive)

 Cold data in object storage Storage Cost

Join the Community

Slack

doris.apache.org
Website

apache/doris
Twitter

@doris_apache

Apache Doris
LinkedIn

dev@doris.apache.org
Email Group

Apache Doris
Medium

https://doris.apache.org
https://github.com/apache/doris/
https://twitter.com/doris_apache

