

从ElasticSearch到SelectDB 构建新一代日志平台

肖康 飞轮科技

2024.10

目录

- 01 日志存储分析场景需求
- 02 基于 ES 的日志平台痛点
- 03 基于 SelectDB 的新一代日志平台
- 04 实践案例

日志存储分析场景需求

日志存储分析的典型应用场景

可观测性

保障服务稳定 提升用户体验

网络安全

降低安全风险 提升系统安全性

业务分析

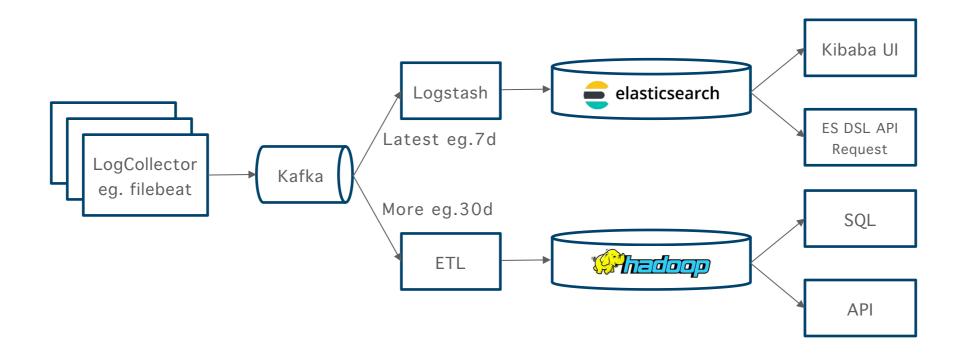
支持业务分析 加速业务增长

日志存储分析的 3V

Variety - Schema Free

数据类型多样,Text和JSON Schema Evolution

Volume - 数据量大


存储规模大、存储周期长 对存储成本敏感

Velocity - 实时写入与检索

海量数据实时写入、低延迟可见 实时交互式分析

2 基于 ES 的日志系统痛点

基于 ES 的典型日志系统架构

每日增量: TB级 数据总量: PB级 查询并发: 几个到百QPS

挑战 1-性价比低

写入性能低

- 数据写入需要构建索引、消耗大量 CPU 资源、 写入效率低下
- 业务高峰期容易触发 reject, 写入延迟升高

存储成本高

- 行存、倒排、列存等多份数据存储,高度冗余
- 整体数据压缩比约 1:1.5, 远低于常见的 1:5

多套系统 架构复杂

- 由于 ES 成本高,只存储最近几天的数据,更多或者全量数据在 Hadoop 或者数据湖
- 维护维护复杂:多套系统,多个数据流程
- 系统使用复杂:不同时间数据从不同系统查,查 询方式差异大

挑战 2 - 维护和使用复杂

多套系统

- 由于 ES 成本高,只存储最近几天的数据
- 更多或者全量数据在 Hadoop 或者数据湖

维护复杂

- 维护不同技术栈的两套存储系统
- 维护两条数据处理的流程

使用复杂

- 最新数据从ES查,历史数据从Hadoop查
- 两个系统查询差异大,用户使用成本高

实时数据, ES DSL 接口

历史数据, SQL或其他接口

挑战3 - 分析能力弱

Query DSL 学习门槛高

- DSL (Domain Specific Language) 面向 搜索场景设计
- 不符合使用习惯,写查询经常需要查手册

- DSL功能单一 只支持简单的单表分析
- **不支持Join** 不支持多表 Join、子查询、视图等复杂分析

DSL生态封闭

● ES 生态自成体系,与BI类系统或数据生态工具 打通较为困难

```
"size": 0,
"query": {
 "bool": {
   "must": [
       "range": {
          "timestamp": {
           "gte": "1998-05-01T00:00:00Z",
            "lt": "1998-05-02T00:00:00Z"
        "match": {
         "message": "error"
"aggs": {
 "by_hour": {
   "date_histogram": {
     "field": "timestamp",
      "calendar_interval": "hour"
```

挑战4 - Schema Evolution 支持有限

字段类型 固定不变

- 字段类型冲突不允许写入
 - 字段类型不能更改 => reindex 重写数据

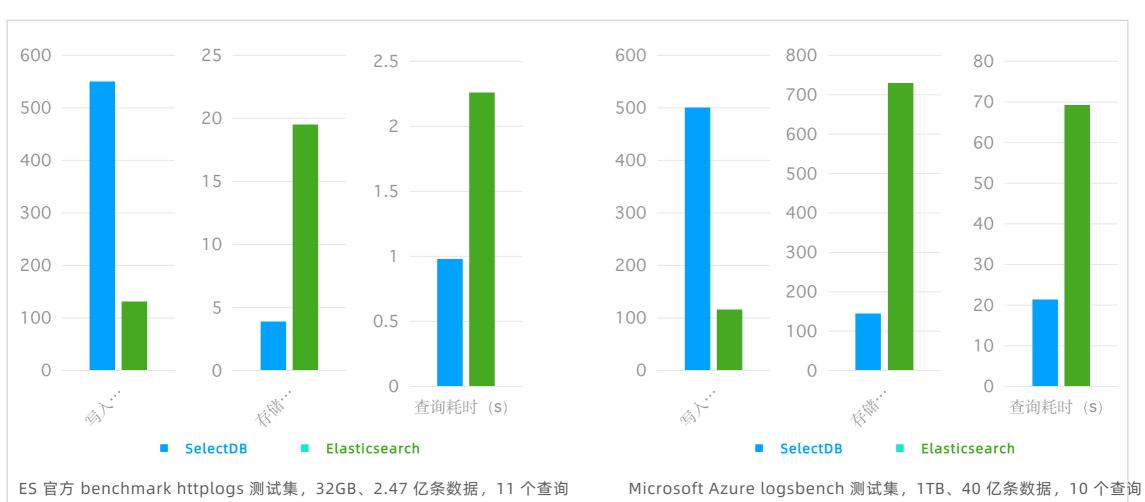
索引 固定不变

- 已有字段的索引不能增加或删除 => 全建索引
- 已有字段的索引不能调整分词等参数

```
"mappings": {
 "properties": {
   "@timestamp": {
     "format": "strict_date_optional_timellepoch_second",
     "type": "date"
   "message": {
     "type": "keyword",
     "index": false,
     "doc_values": false
   "clientip": {
     "type": "ip"
   "request": {
     "type": "match_only_text"
   "status": {
     "type": "integer"
   "size": {
     "type": "integer"
```

3 基于SelectDB的新一代日志分析平台

基于 SelectDB 开放、高性能、低成本 日志系统架构


开放的日志接入方式

高性能、低成本 统一日志存储

兼容MySQL的开放生态

优势1 - 超高性价比

相对于ES 3~5倍 写入吞吐提升,80% 存储空间降低,2~3倍 查询性能提升

优势 1 - 超高性价比

	Elasticsearch	SelectDB	SelectDB 冷热分层
日增数据(TB)	100	100	100
热数据天数	3	3	3
冷数据天数	27	27	27
数据压缩比	1.5	7.5	7.5
热数据存储空间(TB)	200	40	40
冷数据存储空间(TB)	1800	360	360
服务器配置	16C 64G 26.3TB	16C 64G 26.3TB	16C 64G 6.1TB
服务器数量	95	19	19
计算资源成本(万元/月)	23.1	4.6	4.6
云盘存储成本(万元/月)	71.7	14.3	1.4
对象存储成本(万元/月)	0	0	3.8
云资源总成本(万元/月)	94.8	18.9	9.8
综合性价比	1	5倍	9.7倍

优势 2 - 实时和历史数据统一

一套系统

- 一套系统部署和数据处理流程
- 一套查询接口和查询界面

维护简单

- 维护一套存储系统和数据处理流程
- 支持SSD、HDD、S3 三种存储介质
 - 定义好数据生命周期,自动热转冷、过期删除

使用简单

- 一个SQL查询接口,冷热数据查询方式一致
- 可以跨冷热分界混合查询

优势 3 - 基于 SQL 的分析引擎

优势 4 - 原生的半结构化数据支持

丰富的 数据类型

- Text, JSON, Array, Map
 - Variant, 允许一个字段多种类型

```
{
    "id": 134567,
    "name": "name1"
}

{
    "id": "vip_48679",
    "name": "name2"
}
```

Schema Evolution

- 在线毫秒级增减字段
- 在线按需增减索引,指定分区构建索引
- 在线按需更改类型

```
ALTER TABLE t ADD COLUMN c;

ALTER TABLE t ADD INDEX idx_a(a) USING INVERTED;

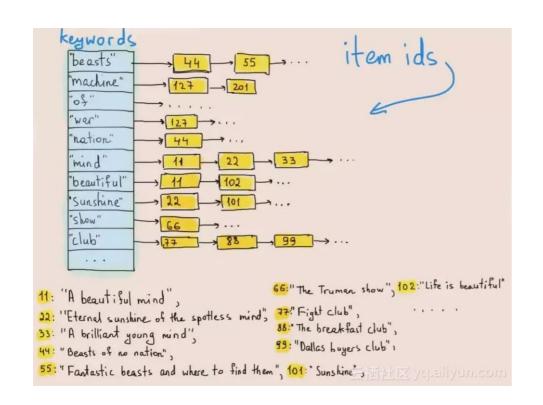
BUILD INDEX idx_a ON t PARTITION(p20230808);
```

优势 4 - 原生的半结构化数据类型 variant

JSON数据 自适应

- 自动识别JSON数据中的字段名和类型
- 自动将频繁出现的字段采用列式存储
- 自动将不频繁的字段合并存储,避免类似 ES的mapping爆炸

支持一个字段 多个类型


- 允许一个字段有多种类型
- 更好满足业务发展中字段类型变化的需求

支持倒排索引

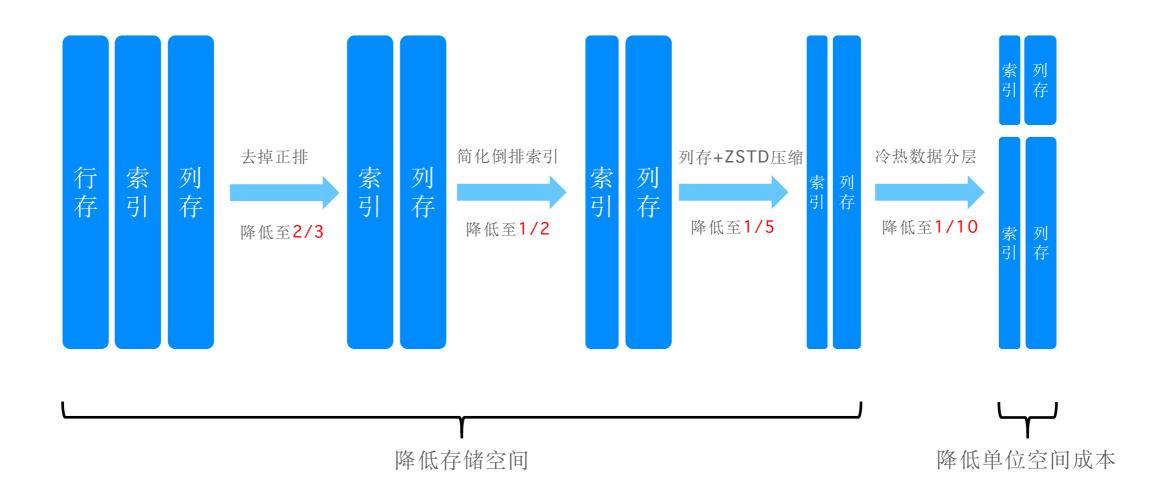
- 为variant字段创建<mark>倒排索引</mark>,子字段自动创建
- 可指定文本字段是否分词、分词类型等参数
- 后续版本将支持各个子字段索引灵活定义

```
-- 创建了三个VARIANT类型的列, actor, repo和payload
-- 创建表的同时创建了payload列的倒排索引idx_payload
-- USING INVERTED 指定索引类型是倒排索引,用于加速子列的条件过滤
-- PROPERTIES("parser" = "english") 指定对子列采用english分词
CREATE TABLE IF NOT EXISTS github_events (
    id BIGINT NOT NULL,
    type VARCHAR(30) NULL,
    actor VARIANT NULL,
    repo VARIANT NULL,
    payload VARIANT NULL,
    public BOOLEAN NULL,
    created_at DATETIME NULL,
    INDEX idx_payload (`payload`) USING INVERTED PROPERTIES("parser" = "english")
mysql> desc github_events;
| Field
 l id
 type
 actor
| actor.avatar_url
 actor.display_login
                                                                 false | NULL
                                                                              NONE
 l actor.id
 actor.login
                                                           | Yes | false | NULL
                                                                              NONE
| actor.url
                                                           | Yes | false | NULL
                                                                              NONE
 created at
                                                DATETIME
                                                                 false | NULL
                                                                             NONE
| payload
                                                           | Yes | false | NULL
 | payload.action
                                                           | Yes | false | NULL
| pavload.before
                                                           | Yes | false | NULL
                                                                              NONE
| payload.comment.author_association
                                                TEXT
                                                           Yes | false | NULL
                                                                             NONE
| payload.comment.body
                                                          Yes | false | NULL | NONE |
```

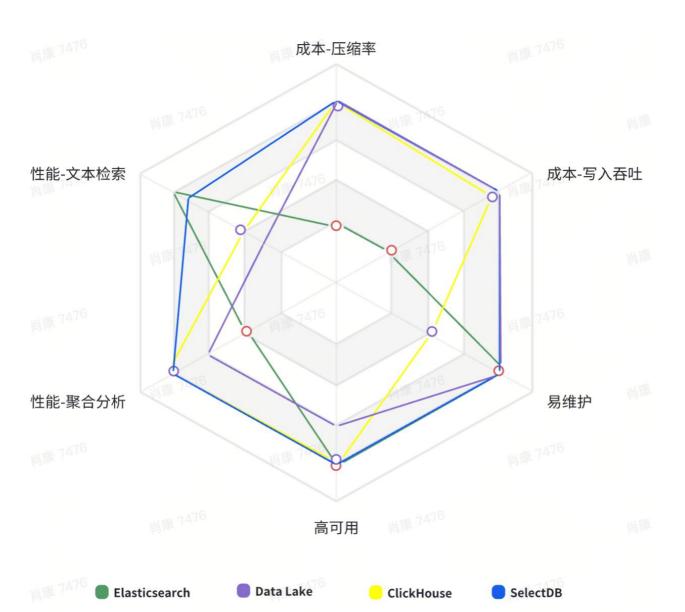
关键技术 - 倒排索引


```
CREATE TABLE httplog
  `ts` DATETIME,
  `clientip` VARCHAR(20),
  `request` TEXT,
 INDEX idx_clientip ('clientip') USING INVERTED,
 INDEX idx_request (`request`) USING INVERTED PROPERTIES("parser" = "unicode")
DUPLICATE KEY('ts')
-- 查看最新的10条数据
SELECT * FROM httplog ORDER BY ts DESC LIMIT 10;
-- 查询clientip为'8.8.8.8'的最新10条数据
SELECT * FROM httplog WHERE clientip = '8.8.8.8' ORDER BY ts DESC LIMIT 10;
-- 检索request字段中有error或者404的最新10条数据
SELECT * FROM httplog WHERE request MATCH_ANY 'error 404' ORDER BY ts DESC LIMIT 10;
-- 检索request字段中有image和fag的最新10条数据
SELECT * FROM httplog WHERE request MATCH_ALL 'image faq' ORDER BY ts DESC LIMIT 10;
```

关键技术 - 日志检索查询优化



效果: 百亿日志检索秒级响应


关键技术 - 导入性能优化

关键技术 - 存储成本优化

多种方案对比

4 实践案例

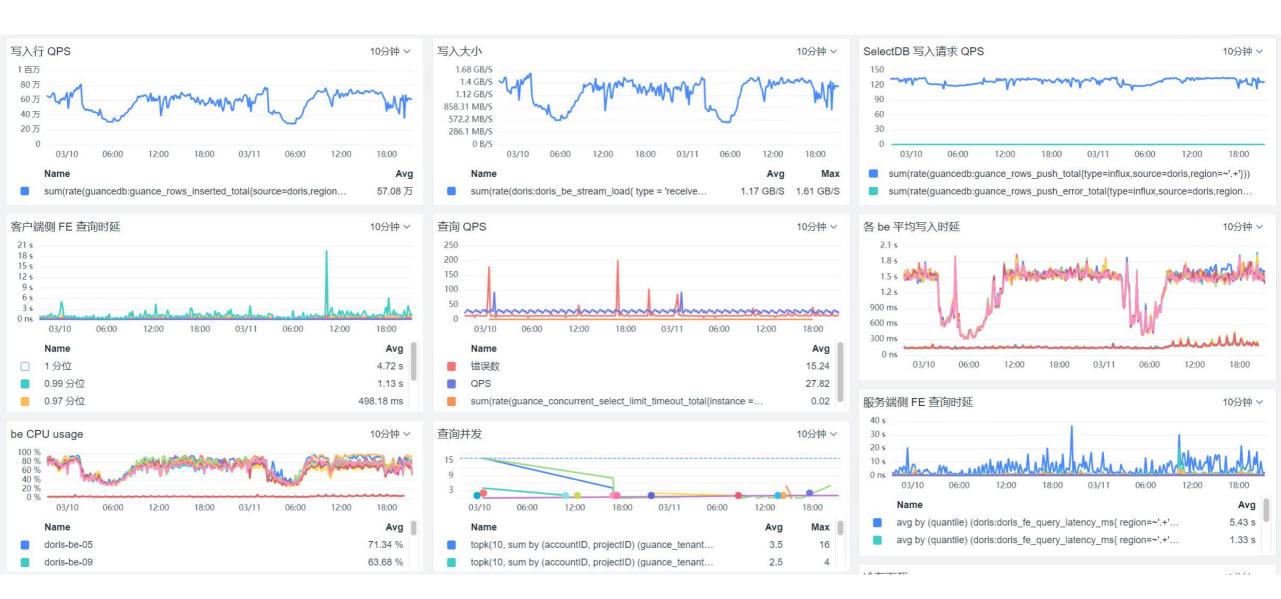
实践案例1 - 可观测性 & 汽车制造

"SelectDB提供了灵活半结构化类型variant,成本相比云上ES节省70%,全文检索提升2-3倍"

可观测性数据采集

Log Trace 统一存储平台

可观测性可视化分析


集群规模: 10 台虚拟机

数据增量:每天新增 400 亿条数据、80TB, SelectDB 压缩后 16TB(包括倒排索引,压缩率1:5)

数据总量: 1 副本保存 30 天, 总共 480TB、1.2 万亿条

写入性能: 线上平均 50w/s、1GB/s, 峰值 100w/s, 2GB/s, 秒级实时写入

实践案例 1 - 可观测性 & 汽车制造

实践案例 2 - 网络安全

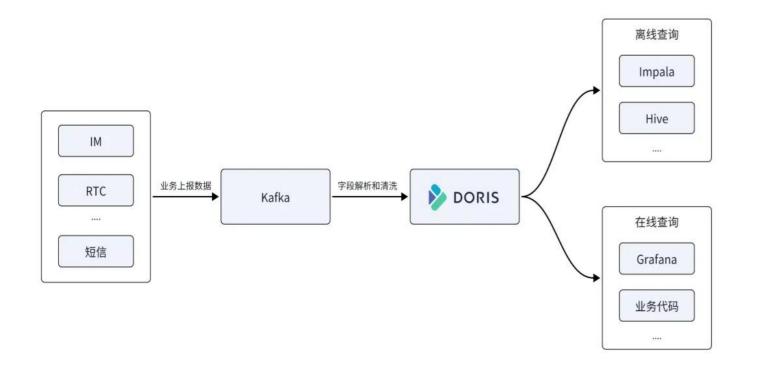
"SelectDB只用原来1/5的服务器,承载了1GB/S的写入流量,安全分析查询响应速度更快"

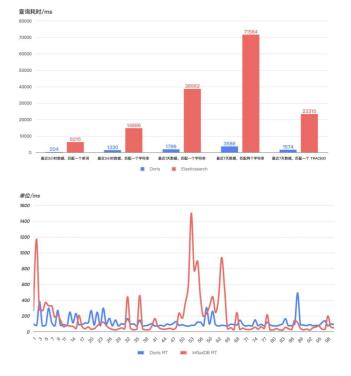
消息系统数据导入

统一日志存储分析平台

安全数据分析

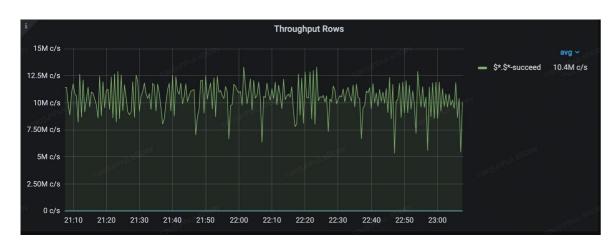
集群规模: 10 台物理机

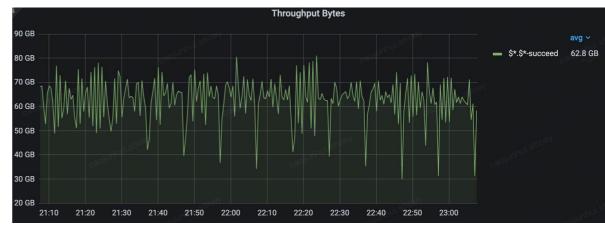

数据增量: 每天新增 150 亿条日志、8.3TB, SelectDB 压缩后 1.4TB(包括倒排索引,压缩率 5.9)


数据总量: 3 副本保存 60 天, 总共 252TB、9 千亿条

写入性能:线上平均 20w/s、100MB/s,峰值 100w/s、500MB/s,压测 3 台机器 200w/s、1GB/s

实践案例 3 - 互联网

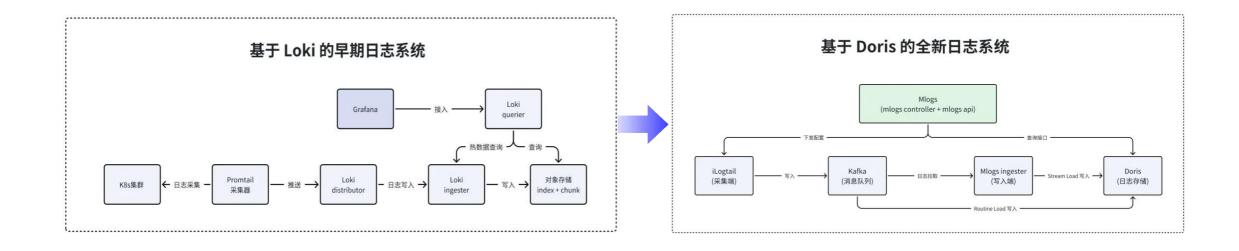

"网易日志数据存储空间降低到ES的 1/3,查询效率获得 10 倍提升,查询性能更加平稳时序场景替代 Influx DB,服务器节省 50%,存储空间降低 67%"



实践案例 4 - 移动互联网

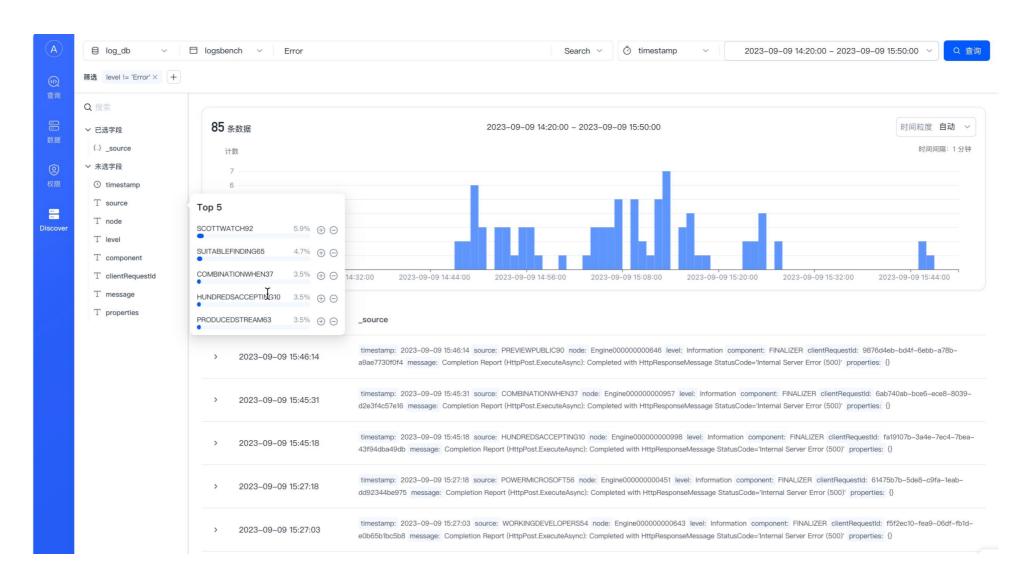
"Log Trace 场景能够完全支持,标志着 Doris 几乎能扛住抖音集团绝大部分场景的导入性能需求"

集群规模: 3000+ core


数据增量:每天新增8000亿条日志、500TB

数据总量: 总共 7PB、24 万亿条

写入性能: 线上平均 1000w/s、60GB/s, 峰值 1500w/s, 90GB/s


实践案例 5 - 大模型

"基于 Doris 的新系统已接入 MiniMax 内部所有业务线日志数据,满足实时写入和查询的需求"

数据规模: PB级 写入性能: 10GB/s 查询: 秒级响应 冷热分层: 7 天热 30 天冷

可视化日志检索

联系我们

欢迎关注SelectDB微信公众号

获取最新活动资讯、技术解析、社区动态

公司邮箱: support@selectdb.com

SelectDB 官网: www.selectdb.com

Apache Doris 官网: https://doris.apache.org/

Apache Doris GitHub: https://github.com/apache/doris

飞轮科技 - 让数据分析快速简单

THANKS

公众号

免费体验